Copied to
clipboard

G = C2×C23.47D4order 128 = 27

Direct product of C2 and C23.47D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C23.47D4, C24.180D4, C23.39SD16, C4⋊C4.49C23, C4.Q860C22, (C2×C4).284C24, (C2×C8).309C23, (C22×C4).435D4, C23.662(C2×D4), (C2×Q8).63C23, Q8⋊C480C22, C2.12(C22×SD16), C22.23(C2×SD16), C22⋊C8.213C22, (C23×C4).554C22, (C22×C8).346C22, C22.544(C22×D4), C22⋊Q8.156C22, (C22×C4).1003C23, C4.56(C22.D4), (C22×Q8).289C22, C22.110(C8.C22), C22.107(C22.D4), (C2×C4.Q8)⋊31C2, C4.94(C2×C4○D4), (C2×C4).846(C2×D4), (C2×Q8⋊C4)⋊39C2, (C22×C4⋊C4).45C2, (C2×C22⋊C8).39C2, C2.26(C2×C8.C22), (C2×C22⋊Q8).54C2, (C2×C4).842(C4○D4), (C2×C4⋊C4).924C22, C2.49(C2×C22.D4), SmallGroup(128,1818)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C23.47D4
C1C2C4C2×C4C22×C4C2×C4⋊C4C22×C4⋊C4 — C2×C23.47D4
C1C2C2×C4 — C2×C23.47D4
C1C23C23×C4 — C2×C23.47D4
C1C2C2C2×C4 — C2×C23.47D4

Generators and relations for C2×C23.47D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=f2=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=fbf-1=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce3 >

Subgroups: 412 in 230 conjugacy classes, 108 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C22⋊C8, Q8⋊C4, C4.Q8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C22×C8, C23×C4, C23×C4, C22×Q8, C2×C22⋊C8, C2×Q8⋊C4, C2×C4.Q8, C23.47D4, C22×C4⋊C4, C2×C22⋊Q8, C2×C23.47D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C24, C22.D4, C2×SD16, C8.C22, C22×D4, C2×C4○D4, C23.47D4, C2×C22.D4, C22×SD16, C2×C8.C22, C2×C23.47D4

Smallest permutation representation of C2×C23.47D4
On 64 points
Generators in S64
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 36)(10 37)(11 38)(12 39)(13 40)(14 33)(15 34)(16 35)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)
(2 64)(4 58)(6 60)(8 62)(10 29)(12 31)(14 25)(16 27)(17 54)(19 56)(21 50)(23 52)(33 42)(35 44)(37 46)(39 48)
(1 63)(2 64)(3 57)(4 58)(5 59)(6 60)(7 61)(8 62)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 54)(18 55)(19 56)(20 49)(21 50)(22 51)(23 52)(24 53)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 41)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 14 5 10)(2 28 6 32)(3 12 7 16)(4 26 8 30)(9 60 13 64)(11 58 15 62)(17 43 21 47)(18 37 22 33)(19 41 23 45)(20 35 24 39)(25 59 29 63)(27 57 31 61)(34 50 38 54)(36 56 40 52)(42 55 46 51)(44 53 48 49)

G:=sub<Sym(64)| (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60), (2,64)(4,58)(6,60)(8,62)(10,29)(12,31)(14,25)(16,27)(17,54)(19,56)(21,50)(23,52)(33,42)(35,44)(37,46)(39,48), (1,63)(2,64)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,54)(18,55)(19,56)(20,49)(21,50)(22,51)(23,52)(24,53)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,14,5,10)(2,28,6,32)(3,12,7,16)(4,26,8,30)(9,60,13,64)(11,58,15,62)(17,43,21,47)(18,37,22,33)(19,41,23,45)(20,35,24,39)(25,59,29,63)(27,57,31,61)(34,50,38,54)(36,56,40,52)(42,55,46,51)(44,53,48,49)>;

G:=Group( (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60), (2,64)(4,58)(6,60)(8,62)(10,29)(12,31)(14,25)(16,27)(17,54)(19,56)(21,50)(23,52)(33,42)(35,44)(37,46)(39,48), (1,63)(2,64)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,54)(18,55)(19,56)(20,49)(21,50)(22,51)(23,52)(24,53)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,14,5,10)(2,28,6,32)(3,12,7,16)(4,26,8,30)(9,60,13,64)(11,58,15,62)(17,43,21,47)(18,37,22,33)(19,41,23,45)(20,35,24,39)(25,59,29,63)(27,57,31,61)(34,50,38,54)(36,56,40,52)(42,55,46,51)(44,53,48,49) );

G=PermutationGroup([[(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,36),(10,37),(11,38),(12,39),(13,40),(14,33),(15,34),(16,35),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60)], [(2,64),(4,58),(6,60),(8,62),(10,29),(12,31),(14,25),(16,27),(17,54),(19,56),(21,50),(23,52),(33,42),(35,44),(37,46),(39,48)], [(1,63),(2,64),(3,57),(4,58),(5,59),(6,60),(7,61),(8,62),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,54),(18,55),(19,56),(20,49),(21,50),(22,51),(23,52),(24,53),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,41)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,14,5,10),(2,28,6,32),(3,12,7,16),(4,26,8,30),(9,60,13,64),(11,58,15,62),(17,43,21,47),(18,37,22,33),(19,41,23,45),(20,35,24,39),(25,59,29,63),(27,57,31,61),(34,50,38,54),(36,56,40,52),(42,55,46,51),(44,53,48,49)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4N4O4P4Q4R8A···8H
order12···2222244444···444448···8
size11···1222222224···488884···4

38 irreducible representations

dim111111122224
type+++++++++-
imageC1C2C2C2C2C2C2D4D4C4○D4SD16C8.C22
kernelC2×C23.47D4C2×C22⋊C8C2×Q8⋊C4C2×C4.Q8C23.47D4C22×C4⋊C4C2×C22⋊Q8C22×C4C24C2×C4C23C22
# reps112281131882

Matrix representation of C2×C23.47D4 in GL5(𝔽17)

160000
016000
001600
000160
000016
,
160000
01000
00100
00010
0001216
,
10000
01000
00100
000160
000016
,
10000
016000
001600
00010
00001
,
160000
012500
0121200
00038
0001614
,
10000
04000
001300
00052
000512

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,12,0,0,0,0,16],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,12,12,0,0,0,5,12,0,0,0,0,0,3,16,0,0,0,8,14],[1,0,0,0,0,0,4,0,0,0,0,0,13,0,0,0,0,0,5,5,0,0,0,2,12] >;

C2×C23.47D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{47}D_4
% in TeX

G:=Group("C2xC2^3.47D4");
// GroupNames label

G:=SmallGroup(128,1818);
// by ID

G=gap.SmallGroup(128,1818);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,100,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=f^2=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=f*b*f^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^3>;
// generators/relations

׿
×
𝔽